Learning Morphological Rules for Amharic Verbs Using Inductive Logic Programming

نویسندگان

  • Wondwossen Mulugeta
  • Michael Gasser
چکیده

This paper presents a supervised machine learning approach to morphological analysis of Amharic verbs. We use Inductive Logic Programming (ILP), implemented in CLOG. CLOG learns rules as a first order predicate decision list. Amharic, an under-resourced African language, has very complex inflectional and derivational verb morphology, with four and five possible prefixes and suffixes respectively. While the affixes are used to show various grammatical features, this paper addresses only subject prefixes and suffixes. The training data used to learn the morphological rules are manually prepared according to the structure of the background predicates used for the learning process. The training resulted in 108 stem extraction and 19 root template extraction rules from the examples provided. After combining the various rules generated, the program has been tested using a test set containing 1,784 Amharic verbs. An accuracy of 86.99% has been achieved, encouraging further application of the method for complex Amharic verbs and other parts of speech.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning the past tense of English verbs using inductive logic programming

This paper presents results on using a new inductive logic programming method called Foidl to learn the past tense of English verbs. The past tense task has been widely studied in the context of the symbolic/connectionist debate. Previous papers have presented results using various neural-network and decision-tree learning methods. We have developed a technique for learning a special type of Pr...

متن کامل

Learning Expressive Models for Word Sense Disambiguation

We present a novel approach to the word sense disambiguation problem which makes use of corpus-based evidence combined with background knowledge. Employing an inductive logic programming algorithm, the approach generates expressive disambiguation rules which exploit several knowledge sources and can also model relations between them. The approach is evaluated in two tasks: identification of the...

متن کامل

Morphological Segmentation of Nouns Using an Inductive Logic Programming System

One of the most explored fields of NLP is morphology. It is important because language is productive: in any given text we will encounter text words an word forms that we haven’t seen before and that are not in a precompiled dictionary. The core task of computational morphology is to take a word as input and produce a morphonological analysis for it. There are a lot of approaches in formalizing...

متن کامل

A machine learning approach for acquiring descriptive classification rules of shape contours

-We devise a method to generate descriptive classification rules of shape contours by using inductive learning. The classification rules are represented in the form of logic programs. We first transform input objects from pixel representation into predicate representation. The transformation consists of preprocessing, feature extraction and symbolic transformation. We then use FOIL which is an ...

متن کامل

A Hybrid Relational Approach for Word Sense Disambiguation

We propose a novel approach for word sense disambiguation which makes use of corpus-based evidence combined with background knowledge. Using an inductive logic programming technique, it generates expressive models which exploit several knowledge sources and also the relations between them. The approach is evaluated in two tasks: identification of the correct translation for verbs in English-Por...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012